

 HTML
Living Standard — Last Updated 7 March 2024

 ← 8.6 Timers — Table of Contents — 8.10 Images →
		8.9 System state and capabilities	8.9.1 The Navigator object	8.9.1.1 Client identification
	8.9.1.2 Language preferences
	8.9.1.3 Browser state
	8.9.1.4 Custom scheme handlers: the registerProtocolHandler() method	8.9.1.4.1 Security and privacy
	8.9.1.4.2 User agent automation

	8.9.1.5 Cookies
	8.9.1.6 PDF viewing support

8.9 System state and capabilities

 8.9.1 The Navigator object
✔MDNNavigator
Support in all current engines.
Firefox1+Safari1+Chrome1+
Opera3+Edge79+
Edge (Legacy)12+Internet Explorer4+
Firefox Android?Safari iOS?Chrome Android?WebView Android?Samsung Internet?Opera Android10.1+

 Instances of Navigator represent the identity and state of the user agent (the
 client). They also serve as a generic global under which various APIs are located in this and
 other specifications.

 [Exposed=Window]
interface Navigator {
 // objects implementing this interface also implement the interfaces given below
};
Navigator includes NavigatorID;
Navigator includes NavigatorLanguage;
Navigator includes NavigatorOnLine;
Navigator includes NavigatorContentUtils;
Navigator includes NavigatorCookies;
Navigator includes NavigatorPlugins;
Navigator includes NavigatorConcurrentHardware;

 These interface mixins are defined separately so that WorkerNavigator can reuse parts of
 the Navigator interface.

 Each Window has an associated Navigator, which is a Navigator
 object. Upon creation of the Window object, its associated Navigator must be
 set to a new Navigator object created in the Window object's relevant realm.

 ✔MDNWindow/navigator
Support in all current engines.
Firefox1+Safari1+Chrome1+
Opera3+Edge79+
Edge (Legacy)12+Internet Explorer4+
Firefox Android?Safari iOS?Chrome Android?WebView Android?Samsung Internet?Opera Android10.1+

The navigator and clientInformation getter steps are to return
 this's associated Navigator.

 8.9.1.1 Client identification

 interface mixin NavigatorID {
 readonly attribute DOMString appCodeName; // constant "Mozilla"
 readonly attribute DOMString appName; // constant "Netscape"
 readonly attribute DOMString appVersion;
 readonly attribute DOMString platform;
 readonly attribute DOMString product; // constant "Gecko"
 [Exposed=Window] readonly attribute DOMString productSub;
 readonly attribute DOMString userAgent;
 [Exposed=Window] readonly attribute DOMString vendor;
 [Exposed=Window] readonly attribute DOMString vendorSub; // constant ""
};

 In certain cases, despite the best efforts of the entire industry, web browsers have bugs and
 limitations that web authors are forced to work around.

 This section defines a collection of attributes that can be used to determine, from script, the
 kind of user agent in use, in order to work around these issues.

 The user agent has a navigator compatibility
 mode, which is either Chrome, Gecko, or WebKit.

 The navigator compatibility
 mode constrains the NavigatorID mixin to the combinations of attribute
 values and presence of taintEnabled() and oscpu that are known to be compatible with existing web
 content.

 Client detection should always be limited to detecting known current versions; future versions
 and unknown versions should always be assumed to be fully compliant.

 	self.navigator.appCodeName
	Returns the string "Mozilla".

	self.navigator.appName
	Returns the string "Netscape".

	self.navigator.appVersion
	Returns the version of the browser.

	self.navigator.platform
	Returns the name of the platform.

	self.navigator.product
	Returns the string "Gecko".

	window.navigator.productSub
	Returns either the string "20030107", or the string "20100101".

	self.navigator.userAgent

✔MDNNavigator/userAgent
Support in all current engines.
Firefox1+Safari1+Chrome1+
Opera12.1+Edge79+
Edge (Legacy)12+Internet Explorer4+
Firefox Android?Safari iOS?Chrome Android?WebView Android?Samsung Internet?Opera Android12.1+

WorkerNavigator/userAgent
Support in all current engines.
Firefox3.5+Safari4+Chrome4+
Opera12.1+Edge79+
Edge (Legacy)12+Internet Explorer10+
Firefox Android?Safari iOS5+Chrome Android?WebView Android?Samsung Internet?Opera Android12.1+

	Returns the complete `User-Agent` header.

	window.navigator.vendor
	Returns either the empty string, the string "Apple Computer, Inc.",
 or the string "Google Inc.".

	window.navigator.vendorSub
	Returns the empty string.

 	appCodeName
	Must return the string "Mozilla".

	appName
	Must return the string "Netscape".

	appVersion
	
 Must return the appropriate string that starts with "5.0 (", as
 follows:

 Let trail be the substring of default
 `User-Agent` value that follows the "Mozilla/"
 prefix.

 	If the navigator
 compatibility mode is Chrome or WebKit
	Return trail.

	If the navigator compatibility
 mode is Gecko
	
 If trail starts with "5.0 (Windows", then return "5.0 (Windows)".

 Otherwise, return the prefix of trail up to but not including the first U+003B
 (;), concatenated with the character U+0029 RIGHT PARENTHESIS. For example, "5.0 (Macintosh)", "5.0 (Android 10)", or "5.0 (X11)".

	platform
	Must return a string representing the platform on which the
 browser is executing (e.g. "MacIntel", "Win32",
 "Linux x86_64", "Linux armv81") or, for privacy and
 compatibility, a string that is commonly returned on another platform.

	product
	Must return the string "Gecko".

	productSub
	
 Must return the appropriate string from the following list:

 	If the navigator compatibility
 mode is Chrome or WebKit
	The string "20030107".

	If the navigator compatibility
 mode is Gecko
	The string "20100101".

	userAgent
	Must return the default `User-Agent`
 value.

	vendor
	
 Must return the appropriate string from the following list:

 	If the navigator compatibility
 mode is Chrome
	The string "Google Inc.".

	If the navigator compatibility
 mode is Gecko
	The empty string.

	If the navigator compatibility
 mode is WebKit
	The string "Apple Computer, Inc.".

	vendorSub
	Must return the empty string.

 If the navigator compatibility mode
 is Gecko, then the user agent must also support the following partial interface:

 partial interface mixin NavigatorID {
 [Exposed=Window] boolean taintEnabled(); // constant false
 [Exposed=Window] readonly attribute DOMString oscpu;
};

 The taintEnabled() method must return false.

 The oscpu attribute's getter must return
 either the empty string or a string representing the platform on which the browser is executing,
 e.g. "Windows NT 10.0; Win64; x64", "Linux
 x86_64".

 Any information in this API that varies from user to user can be used to profile the user. In
 fact, if enough such information is available, a user can actually be uniquely identified. For
 this reason, user agent implementers are strongly urged to include as little information in this
 API as possible.

 8.9.1.2 Language preferences

 interface mixin NavigatorLanguage {
 readonly attribute DOMString language;
 readonly attribute FrozenArray<DOMString> languages;
};

 	self.navigator.language

✔MDNNavigator/language
Support in all current engines.
Firefox1+Safari1+Chrome1+
Opera4+Edge79+
Edge (Legacy)12+Internet Explorer11
Firefox Android4+Safari iOS?Chrome Android?WebView Android?Samsung Internet?Opera Android10.1+

WorkerNavigator/language
Support in all current engines.
Firefox3.5+Safari10+Chrome4+
Opera4+Edge79+
Edge (Legacy)12+Internet Explorer11
Firefox Android4+Safari iOS?Chrome Android?WebView Android?Samsung Internet?Opera Android10.1+

	Returns a language tag representing the user's preferred language.

	self.navigator.languages

✔MDNNavigator/languages
Support in all current engines.
Firefox32+Safari10.1+Chrome37+
Opera24+Edge79+
Edge (Legacy)16+Internet ExplorerNo
Firefox Android?Safari iOS?Chrome Android?WebView Android37+Samsung Internet3.0+Opera Android24+

WorkerNavigator/languages
Support in all current engines.
Firefox32+Safari10.1+Chrome37+
Opera24+Edge79+
Edge (Legacy)16+Internet ExplorerNo
Firefox Android?Safari iOS?Chrome Android?WebView Android37+Samsung Internet3.0+Opera Android24+

	
 Returns an array of language tags representing the user's preferred languages, with the most
 preferred language first.

 The most preferred language is the one returned by navigator.language.

 A languagechange event is fired at the
 Window or WorkerGlobalScope object when the user agent's understanding
 of what the user's preferred languages are changes.

 	language
	Must return a valid BCP 47
 language tag representing either a plausible language or the user's most preferred
 language. [BCP47]

	languages
	
 Must return a frozen array of valid BCP 47 language tags representing either one
 or more plausible languages, or the user's preferred
 languages, ordered by preference with the most preferred language first. The same object must be
 returned until the user agent needs to return different values, or values in a different order.
 [BCP47]

 Whenever the user agent needs to make the navigator.languages attribute of a Window
 or WorkerGlobalScope object global return a new set of language tags,
 the user agent must queue a global task on the DOM manipulation task
 source given global to fire an event
 named languagechange at global, and wait
 until that task begins to be executed before actually returning a new value.

 To determine a plausible language, the user agent should bear in mind the following:

 	

 Any information in this API that varies from user to user can be used to profile or identify the
 user.
	If the user is not using a service that obfuscates the user's point of origin (e.g. the Tor
 anonymity network), then the value that is least likely to distinguish the user from other users
 with similar origins (e.g. from the same IP address block) is the language used by the majority
 of such users. [TOR]
	If the user is using an anonymizing service, then the value "en-US" is
 suggested; if all users of the service use that same value, that reduces the possibility of
 distinguishing the users from each other.

 To avoid introducing any more fingerprinting vectors, user agents should use the same list for the
 APIs defined in this function as for the HTTP `Accept-Language` header.

 8.9.1.3 Browser state

 interface mixin NavigatorOnLine {
 readonly attribute boolean onLine;
};

 	self.navigator.onLine

✔MDNNavigator/onLine
Support in all current engines.
Firefox1.5+Safari4+Chrome2+
Opera3+Edge79+
Edge (Legacy)12+Internet Explorer4+
Firefox Android4+Safari iOS?Chrome Android18+WebView Android🔰 37+Samsung Internet?Opera Android10.1+

WorkerNavigator/onLine
Support in all current engines.
Firefox3.5+Safari4+Chrome4+
Opera10.6+Edge79+
Edge (Legacy)12+Internet Explorer10+
Firefox Android4+Safari iOS5+Chrome Android?WebView Android🔰 4.4+Samsung Internet?Opera Android11+

	
 Returns false if the user agent is definitely offline (disconnected from the network).
 Returns true if the user agent might be online.

 The events online and offline are fired when the value of this attribute changes.

 The onLine attribute must return false if the user agent
 will not contact the network when the user follows links or when a script requests a remote page
 (or knows that such an attempt would fail), and must return true otherwise.

 When the value that would be returned by the navigator.onLine attribute of a Window or
 WorkerGlobalScope global changes from true to false, the user agent must
 queue a global task on the networking task source given
 global to fire an event named offline at global.

 On the other hand, when the value that would be returned by the navigator.onLine attribute of a Window or
 WorkerGlobalScope global changes from false to true, the user agent must
 queue a global task on the networking task source given
 global to fire an event named online at the Window or WorkerGlobalScope
 object.

 This attribute is inherently unreliable. A computer can be connected to a network
 without having Internet access.

 In this example, an indicator is updated as the browser goes online and offline.

 <!DOCTYPE HTML>
<html lang="en">
 <head>
 <title>Online status</title>
 <script>
 function updateIndicator() {
 document.getElementById('indicator').textContent = navigator.onLine ? 'online' : 'offline';
 }
 </script>
 </head>
 <body onload="updateIndicator()" ononline="updateIndicator()" onoffline="updateIndicator()">
 <p>The network is: (state unknown)
 </body>
</html>

 8.9.1.4 Custom scheme handlers: the registerProtocolHandler() method
MDNNavigator/registerProtocolHandler
Firefox2+SafariNoChrome13+
Opera11.6+Edge79+
Edge (Legacy)NoInternet ExplorerNo
Firefox Android?Safari iOS?Chrome AndroidNoWebView Android?Samsung Internet?Opera Android?

 interface mixin NavigatorContentUtils {
 [SecureContext] undefined registerProtocolHandler(DOMString scheme, USVString url);
 [SecureContext] undefined unregisterProtocolHandler(DOMString scheme, USVString url);
};

 	window.navigator.registerProtocolHandler(scheme, url)
	
 Registers a handler for scheme at url. For example, an online telephone
 messaging service could register itself as a handler of the sms: scheme, so that if the user clicks on such a link, they are given the
 opportunity to use that web site. [SMS]

 The string "%s" in url is used as a placeholder for where
 to put the URL of the content to be handled.

 Throws a "SecurityError" DOMException if the user
 agent blocks the registration (this might happen if trying to register as a handler for "http", for instance).

 Throws a "SyntaxError" DOMException if the "%s" string is missing in url.

	window.navigator.unregisterProtocolHandler(scheme, url)

⚠MDNNavigator/unregisterProtocolHandler
Support in one engine only.
FirefoxNoSafariNoChrome38+
Opera25+Edge79+
Edge (Legacy)?Internet ExplorerNo
Firefox Android?Safari iOS?Chrome AndroidNoWebView Android?Samsung Internet?Opera Android?

	
 Unregisters the handler given by the arguments.

 Throws a "SecurityError" DOMException if the user
 agent blocks the deregistration (this might happen if with invalid schemes, for instance).

 Throws a "SyntaxError" DOMException if the "%s" string is missing in url.

 The registerProtocolHandler(scheme,
 url) method steps are:

 	Let (normalizedScheme, normalizedURLString) be the result of running
 normalize protocol handler parameters with scheme, url, and
 this's relevant settings object.

	
 In parallel: register a
 protocol handler for normalizedScheme and normalizedURLString. User
 agents may, within the constraints described, do whatever they like. A user agent could, for
 instance, prompt the user and offer the user the opportunity to add the site to a shortlist of
 handlers, or make the handlers their default, or cancel the request. User agents could also
 silently collect the information, providing it only when relevant to the user.

 User agents should keep track of which sites have registered handlers (even if the user has
 declined such registrations) so that the user is not repeatedly prompted with the same
 request.

 If the registerProtocolHandler() automation
 mode of this's relevant global object's associated Document is not "none", the user agent should first verify that it
 is in an automation context (see WebDriver's security considerations). The user
 agent should then bypass the above communication of information and gathering of user consent,
 and instead do the following based on the value of the registerProtocolHandler() automation
 mode:

 	"autoAccept"
	Act as if the user has seen the registration details and accepted the request.

	"autoReject"
	Act as if the user has seen the registration details and rejected the request.

 When the user agent uses this handler for a URL inputURL:

 	Assert: inputURL's scheme is normalizedScheme.

	Set the username given inputURL and
 the empty string.

	Set the password given inputURL and
 the empty string.

	Let inputURLString be the serialization of inputURL.

	Let encodedURL be the result of running UTF-8 percent-encode on
 inputURLString using the component percent-encode set.

	Let handlerURLString be normalizedURLString.

	Replace the first instance of "%s" in handlerURLString
 with encodedURL.

	Let resultURL be the result of parsing
 handlerURLString.

	Navigate an appropriate navigable to
 resultURL.

 If the user had visited a site at https://example.com/ that made the
 following call:

 navigator.registerProtocolHandler('web+soup', 'soup?url=%s')

 ...and then, much later, while visiting https://www.example.net/,
 clicked on a link such as:

 Download our Chicken Kïwi soup!

 ...then the UA might navigate to the following URL:

 https://example.com/soup?url=web+soup:chicken-k%C3%AFwi

 This site could then do whatever it is that it does with soup (synthesize it and ship it to
 the user, or whatever).

 This does not define when the handler is used. To some extent, the processing model for navigating across documents defines some cases
 where it is relevant, but in general user agents may use this information wherever they would
 otherwise consider handing schemes to native plugins or helper applications.

 The unregisterProtocolHandler(scheme,
 url) method steps are:

	Let (normalizedScheme, normalizedURLString) be the result of running
 normalize protocol handler parameters with scheme, url, and
 this's relevant settings object.

	In parallel: unregister the handler described by normalizedScheme
 and normalizedURLString.

 To normalize protocol handler parameters, given a string scheme, a
 string url, and an environment settings object environment, run
 these steps:

 	Set scheme to scheme, converted to ASCII
 lowercase.

	
 If scheme is neither a safelisted scheme nor a string starting with
 "web+" followed by one or more ASCII
 lower alphas, then throw a "SecurityError"
 DOMException.

 This means that including a colon in scheme (as in "mailto:") will throw.

 The following schemes are the safelisted
 schemes:

 	bitcoin
	ftp
	ftps
	geo
	im
	irc
	ircs
	magnet
	mailto
	matrix
	mms
	news
	nntp
	openpgp4fpr
	sftp
	sip
	sms
	smsto
	ssh
	tel
	urn
	webcal
	wtai
	xmpp

 This list can be changed. If there are schemes that ought to be added, please
 send feedback.

	If url does not contain "%s", then throw a
 "SyntaxError" DOMException.

	Let urlRecord be the result of encoding-parsing a URL given
 url, relative to environment.

	
 If urlRecord is failure, then throw a "SyntaxError"
 DOMException.

 This is forcibly the case if the %s placeholder is in the
 host or port of the URL.

	If urlRecord's scheme is not an
 HTTP(S) scheme or urlRecord's origin is not same origin with
 environment's origin, then throw
 a "SecurityError" DOMException.

	
 Assert: the result of Is url potentially trustworthy? given
 urlRecord is "Potentially Trustworthy".

 Because normalize protocol handler parameters is run within a
 secure context, this is implied by the same origin condition.

	
 Return (scheme, urlRecord).

 The serialization of
 urlRecord will by definition not be a valid URL string as it includes
 the string "%s" which is not a valid component in a URL.

 8.9.1.4.1 Security and privacy

 Custom scheme handlers can introduce a number of concerns, in particular privacy concerns.

 Hijacking all web usage. User agents should not allow schemes that are key to
 its normal operation, such as an HTTP(S) scheme, to be rerouted through third-party
 sites. This would allow a user's activities to be trivially tracked, and would allow user
 information, even in secure connections, to be collected.

 Hijacking defaults. User agents are strongly urged to not automatically change
 any defaults, as this could lead the user to send data to remote hosts that the user is not
 expecting. New handlers registering themselves should never automatically cause those sites to be
 used.

 Registration spamming. User agents should consider the possibility that a site
 will attempt to register a large number of handlers, possibly from multiple domains (e.g., by
 redirecting through a series of pages each on a different domain, and each registering a handler
 for web+spam: — analogous practices abusing other web browser
 features have been used by pornography web sites for many years). User agents should gracefully
 handle such hostile attempts, protecting the user.

 Hostile handler metadata. User agents should protect against typical attacks
 against strings embedded in their interface, for example ensuring that markup or escape characters
 in such strings are not executed, that null bytes are properly handled, that over-long strings do
 not cause crashes or buffer overruns, and so forth.

 Leaking private data. Web page authors may reference a custom scheme
 handler using URL data considered private. They might do so with the expectation that the user's
 choice of handler points to a page inside the organization, ensuring that sensitive data will not
 be exposed to third parties. However, a user may have registered a handler pointing to an
 external site, resulting in a data leak to that third party. Implementers might wish to consider
 allowing administrators to disable custom handlers on certain subdomains, content types, or
 schemes.

 Interface interference. User agents should be prepared to handle intentionally
 long arguments to the methods. For example, if the user interface exposed consists of an "accept"
 button and a "deny" button, with the "accept" binding containing the name of the handler, it's
 important that a long name not cause the "deny" button to be pushed off the screen.

 8.9.1.4.2 User agent automation

 Each Document has a registerProtocolHandler() automation
 mode. It defaults to "none", but it also can
 be either "autoAccept" or "autoReject".

 For the purposes of user agent automation and website testing, this standard defines Set RPH Registration Mode WebDriver extension
 command. It instructs the user agent to place a Document into a mode where it
 will automatically simulate a user either accepting or rejecting and registration confirmation
 prompt dialog.

 	HTTP Method
 	URI Template

	`POST`
 	/session/{session id}/custom-handlers/set-mode

 The remote end steps are:

 	If parameters is not a JSON Object, return a WebDriver error with
 WebDriver error code invalid argument.

	Let mode be the result of getting a property named "mode" from parameters.

	If mode is not "autoAccept", "autoReject, or "none", return a WebDriver error with
 WebDriver error code invalid argument.

	Let document be the current
 browsing context's active document.

	Set document's registerProtocolHandler() automation
 mode to mode.

	Return success with data null.

 8.9.1.5 Cookies

 interface mixin NavigatorCookies {
 readonly attribute boolean cookieEnabled;
};

 	window.navigator.cookieEnabled

✔MDNNavigator/cookieEnabled
Support in all current engines.
Firefox1+Safari1+Chrome1+
Opera12.1+Edge79+
Edge (Legacy)12+Internet Explorer4+
Firefox Android?Safari iOS?Chrome Android?WebView Android?Samsung Internet?Opera Android12.1+

	Returns false if setting a cookie will be ignored, and true otherwise.

 The cookieEnabled attribute must return true if the
 user agent attempts to handle cookies according to HTTP State Management Mechanism,
 and false if it ignores cookie change requests. [COOKIES]

 8.9.1.6 PDF viewing support

 	window.navigator.pdfViewerEnabled
	Returns true if the user agent supports inline viewing of PDF files when navigating to them, or false otherwise. In the latter case, PDF files
 will be handled by external
 software.

 interface mixin NavigatorPlugins {
 [SameObject] readonly attribute PluginArray plugins;
 [SameObject] readonly attribute MimeTypeArray mimeTypes;
 boolean javaEnabled();
 readonly attribute boolean pdfViewerEnabled;
};

[Exposed=Window,
 LegacyUnenumerableNamedProperties]
interface PluginArray {
 undefined refresh();
 readonly attribute unsigned long length;
 getter Plugin? item(unsigned long index);
 getter Plugin? namedItem(DOMString name);
};

[Exposed=Window,
 LegacyUnenumerableNamedProperties]
interface MimeTypeArray {
 readonly attribute unsigned long length;
 getter MimeType? item(unsigned long index);
 getter MimeType? namedItem(DOMString name);
};

[Exposed=Window,
 LegacyUnenumerableNamedProperties]
interface Plugin {
 readonly attribute DOMString name;
 readonly attribute DOMString description;
 readonly attribute DOMString filename;
 readonly attribute unsigned long length;
 getter MimeType? item(unsigned long index);
 getter MimeType? namedItem(DOMString name);
};

[Exposed=Window]
interface MimeType {
 readonly attribute DOMString type;
 readonly attribute DOMString description;
 readonly attribute DOMString suffixes;
 readonly attribute Plugin enabledPlugin;
};

 Although these days detecting PDF viewer support can be done via navigator.pdfViewerEnabled, for historical reasons,
 there are a number of complex and intertwined interfaces that provide the same capability, which
 legacy code relies on. This section specifies both the simple modern variant and the complicated
 historical one.

 Each user agent has a PDF viewer supported boolean, whose value is
 implementation-defined (and might vary according to user preferences).

 This value also impacts the navigation processing
 model.

 Each Window object has a PDF viewer plugin objects list. If the user
 agent's PDF viewer supported is false, then it is the empty list. Otherwise, it is a
 list containing five Plugin objects, whose names are, respectively:

 	"PDF Viewer"
	"Chrome PDF Viewer"
	"Chromium PDF Viewer"
	"Microsoft Edge PDF Viewer"
	"WebKit built-in PDF"

 The values of the above list form the PDF viewer plugin names list.

 These names were chosen based on evidence of what websites historically search
 for, and thus what is necessary for user agents to expose in order to maintain compatibility with
 existing content. They are ordered alphabetically. The "PDF Viewer" name
 was then inserted in the 0th position so that the enabledPlugin getter could point to a generic plugin
 name.

 Each Window object has a PDF viewer mime type objects list. If the user
 agent's PDF viewer supported is false, then it is the empty list. Otherwise, it is a
 list containing two MimeType objects, whose types are, respectively:

 	"application/pdf"
	"text/pdf"

 The values of the above list form the PDF viewer mime types list.

 Each NavigatorPlugins object has a plugins array, which is a new
 PluginArray, and a mime types array, which is a new
 MimeTypeArray.

 The NavigatorPlugins mixin's plugins getter steps are to return this's
 plugins array.

 The NavigatorPlugins mixin's mimeTypes getter steps are to return
 this's mime types array.

 The NavigatorPlugins mixin's javaEnabled() method steps are to return false.

 ✔MDNNavigator/pdfViewerEnabled
Support in all current engines.
Firefox99+Safari16.4+Chrome94+
Opera?Edge94+
Edge (Legacy)?Internet ExplorerNo
Firefox Android?Safari iOS?Chrome Android?WebView Android?Samsung Internet?Opera Android?

The NavigatorPlugins mixin's pdfViewerEnabled getter steps are to return
 the user agent's PDF viewer supported.

 The PluginArray interface supports named
 properties. If the user agent's PDF viewer supported is true, then they are
 the PDF viewer plugin names. Otherwise, they are the empty list.

 The PluginArray interface's namedItem(name) method steps are:

 	For each Plugin
 plugin of this's relevant global object's PDF viewer
 plugin objects: if plugin's name is
 name, then return plugin.

	Return null.

 The PluginArray interface supports indexed properties. The
 supported property indices are the indices of this's
 relevant global object's PDF viewer plugin objects.

 The PluginArray interface's item(index) method steps are:

 	Let plugins be this's relevant global object's
 PDF viewer plugin objects.

	If index < plugins's size, then
 return plugins[index].

	Return null.

 The PluginArray interface's length getter steps are to return this's
 relevant global object's PDF viewer plugin objects's size.

 The PluginArray interface's refresh() method steps are to do nothing.

 The MimeTypeArray interface supports named
 properties. If the user agent's PDF viewer supported is true, then they are
 the PDF viewer mime types. Otherwise, they are the empty list.

 The MimeTypeArray interface's namedItem(name) method steps are:

 	For each MimeType mimeType of
 this's relevant global object's PDF viewer mime type
 objects: if mimeType's type is
 name, then return mimeType.

	Return null.

 The MimeTypeArray interface supports indexed properties. The
 supported property indices are the indices of this's
 relevant global object's PDF viewer mime type objects.

 The MimeTypeArray interface's item(index) method steps are:

 	Let mimeTypes be this's relevant global object's
 PDF viewer mime type objects.

	If index < mimeTypes's size, then
 return mimeTypes[index].

	Return null.

 The MimeTypeArray interface's length getter steps are to return
 this's relevant global object's PDF viewer mime type
 objects's size.

 Each Plugin object has a name, which is set when the object is created.

 The Plugin interface's name getter steps are to return this's name.

 The Plugin interface's description getter steps are to return "Portable Document Format".

 The Plugin interface's filename getter steps are to return "internal-pdf-viewer".

 The Plugin interface supports named properties. If the user agent's PDF viewer
 supported is true, then they are the PDF viewer mime types. Otherwise, they
 are the empty list.

 The Plugin interface's namedItem(name) method steps are:

 	For each MimeType mimeType of
 this's relevant global object's PDF viewer mime type
 objects: if mimeType's type is
 name, then return mimeType.

	Return null.

 The Plugin interface supports indexed properties.
 The supported property indices are the indices of this's
 relevant global object's PDF viewer mime type objects.

 The Plugin interface's item(index) method steps are:

 	Let mimeTypes be this's relevant global object's
 PDF viewer mime type objects.

	If index < mimeType's size, then
 return mimeTypes[index].

	Return null.

 The Plugin interface's length getter steps are to return
 this's relevant global object's PDF viewer mime type
 objects's size.

 Each MimeType object has a type, which
 is set when the object is created.

 The MimeType interface's type getter steps are to return this's type.

 The MimeType interface's description getter steps are to return "Portable Document Format".

 The MimeType interface's suffixes getter steps are to return "pdf".

 The MimeType interface's enabledPlugin getter steps are to return
 this's relevant global object's PDF viewer plugin
 objects[0] (i.e., the generic "PDF Viewer" one).

 ← 8.6 Timers — Table of Contents — 8.10 Images →
